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ABSTRACT

Most analytical models include variables that have randomness or uncertainties associated

with them.  These models span many scientific and engineering disciplines.  Analyzing these

models without incorporating the uncertainties may provide misleading results.  In this

paper, several methods for evaluating uncertainty are summarized.  One of these methods

is illustrated using the Lotus 1-2-3 spreadsheet package.  In particular, a model's uncertainty

is determined by using multivariate Taylor series expansion.  Lotus 1-2-3 macros and

formulae for Taylor series expansion, along with a worked example, are presented.  It is the

intent of this paper to provide Idaho researchers with a viable tool for estimating uncertainty

for any model that may be  evaluated using a spreadsheet.
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1.  Introduction

Given a formula which models a system, obtaining an answer is usually a relatively simple process

which involves evaluating the formula using the estimates for each variable contained within the formula.

However, what exactly does the outcome represent?  If the formula incorporates variables which have

uncertainties (i.e., have a specific distribution or range), the results of the formula must incorporate the

variable uncertainty in order to be considered valid.  Evaluating models that contain random variables by

exclusively using point estimate values does not incorporate the uncertainty of the independent variables and

does not provide complete results.  This view is widely held in the risk analysis community, and is illustrated

by Garlick and Holloway (1987) who state, "Point estimates will be expected, but, however produced, they

will lack credibility without clear justification for preferring one value in a range to all the others."

The results from simple formulas with random variables having insignificant uncertainty will be

affected minimally by not performing uncertainty analysis.  However, for complex systems or models that

have random variables with non-negligible uncertainties, ignoring uncertainty may lead to misleading results.

Also, without performing the uncertainty analysis, no indicator of the possible range of results is available.

Evaluating the uncertainty of a function of random variables can be accomplished by several

different methods using many different analysis tools.  For example, Seila and Banks (1990) illustrate a

method of performing Monte Carlo simulation using an electronic spreadsheet.  In general though, only a

couple of different methods of uncertainty analysis are used by analysts.  A summary of four of the more

popular uncertainty methods appear below.

Sensitivity Analysis  This method of uncertainty analysis involves changing a single parameter of the model,

requantifying the model to obtain a new result, and then comparing the change in the results versus the

change in the parameter.  For example, economic models (such as a mortgage payment schedule) are
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designed so that one of the parameters, such as the interest rate, may be varied so that the monthly payments

are analyzed with respect to the varying interest rate.  Sensitivity analysis has several different forms,

including extreme value analysis where only upper or lower estimates of the parameters are used to quantify

the model.  These types of sensitivity analyses are simple but suffer from several drawbacks, including:

• The entire model must be requantified each time a parameter is varied.  For complex models with

many parameters, a comprehensive sensitivity analysis for all of the model variables may be tedious

or time consuming.  Enhanced sampling approaches (e.g., Latin Hypercube sampling) will help to

minimize time impacts.

• The variable parameters may be modified in an arbitrary manner.  For the mortgage example above,

the interest rate could be changed in increments of 0.25% for several points around the expected

interest rate to provide a somewhat comprehensive analysis.  But, for other parameters, the choice

of values for the sensitivity analysis may not be as straightforward.

• The parameters that are modified for the analysis may be modeled very well by some type of

probability distribution (such as lognormal, gamma, normal, etc.).  Sensitivity analysis is a point-by-

point change, which results in overlooking a parameter's distributional characteristics.  While it may

be possible to sample input values from the range of the parameter’s distribution, this type of

sampling may increase the time needed to perform the analysis.

• Sensitivity analysis lacks coupled variable changes.  For a model with many variables, it is

reasonable to expect that more than one parameter should be modified at the same time.  Also, a

model of many variables could have several different probability distributions.  The interaction

between the distributions are not modeled adequately by changing only one of the model parameters.
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If the input variables are statistically correlated, one-at-a-time sensitivity analysis does not address

such correlations.  While it may be possible to vary more than one parameter at a time, attempting

to evaluate all the potential combinations of input parameters may be unmanagable.

Direct Uncertainty Assessment  This method of analysis is probably the oldest technique of uncertainty

analysis, and can be used to estimate uncertainty on both input parameters and output results.  Direct

assessment of uncertainty consists of arbitrarily assigning uncertainty bounds on the model in question.  For

example, a human task analysis model may predict a human error rate of 0.025 per hour.  The analyst may

conclude that the worst possible error rate is 0.25 per hour, while the most favorable error rate is 0.0025 per

hour.  While this example is a simple demonstration of direct uncertainty assessment, the actual

determination of the uncertainty can sometimes be complicated, and in all cases is conditional on the

individual opinions of the analyst.  Drawbacks to this type of analysis include:

• The process of selecting uncertainty bounds on the model is very subjective and depends on the

viewpoint of the analyst.

• Explaining and defending the rationale that was used in the determination of the uncertainty bounds

could be difficult (i.e., the assessment may be based strictly upon "engineering judgement").

• Since the uncertainty is usually based upon the opinion of the analyst, statistical modeling is not

incorporated.

Taylor Series Expansion  This analysis involves the mathematical evaluation of the model equation.  The

statistical moments (mean, variance, skewness, etc.) for the model are calculated by expanding the model

equation in a Taylor series about the means.  What results from the expansion process is an equation for the
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overall model statistical moments which is a function of the variable moments and the partial derivatives of

the model equation.  Drawbacks to this type of analysis include:

• Numerical differentiation may be difficult or may be done incorrectly leading to incorrect results.

• The numeric expansion may only be good for functions that are linear or nearly linear (unless many

terms are used in the expansion).

• The method is strictly based upon calculations involving a parameter's statistical moments and does

not directly incorporate the parameter's probability distribution (e.g., normal, lognormal, gamma).

Also, the expansion results only return an estimate of the statistical moments and not a distribution.

• Higher order estimates may be necessary to adequately address highly skewed distributions.

• The model may not be defined explicitly as a function of the input variables.  As such, a Taylor

expansion about the mean is not possible for these cases.

Monte Carlo Simulation  This method of uncertainty analysis may be the most popular method of analysis.

Monte Carlo analysis involves sampling the model using the parameters’ probability distribution functions

to provide parameter values.  Usually, a computer-generated random number is used to obtain a parameter

value based on the parameter's probability distribution function.  When a value for each parameter has been

calculated, the model is quantified to obtain an answer.  This answer is then placed into a frequency table.

The entire process is then repeated until a desired number of iterations is reached.  Drawbacks to this type

of analysis include:
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• Model simulation runtime may be too long for some complex models.

• Calculating numerous parameter values needed for many iterations may be time consuming.

• Failure of the computer-generated random numbers to display randomness may skew the results

toward certain values, leaving the resulting statistical parameters suspect.  But, in general, modern

random number generators do not suffer from this problem.

• Selecting the proper probability distribution function for the model parameters may be difficult in

light of inadequate data or a lack of understanding of the underlying physical processes.

In this article, I demonstrate the Taylor series expansion method.  Section 2 defines the statistical

terms used throughout this article.  Section 3 covers the Taylor series expansion development and the

techniques used to implement the Taylor series analysis within a spreadsheet environment such as LOTUS

1-2-3 or EXCEL.  In Section 4, I demonstrate the uncertainty analysis methodology by examining a sample

problem.  Section 5 closes the article by presenting uncertainty analysis considerations and conclusions.

2.  Uncertainty Analysis Statistical Review

To begin this brief statistical review, the notation used in this paper will be specified.  Following the

nomenclature, the terms will be defined as needed.  This section will address only those topics used in this

paper.  The statistical notation used is:

µ = mean (first moment) about the origin

σ = standard deviation (square root of variance)

Var = variance (second moment) about the mean
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Δ = mesh spacing or stepsize

f = probability density function (PDF)

g = user defined function

m = sample mean

s2 = sample variance

Taking each item in turn, the mean or first statistical moment for a continuous random variable is

defined by (where the integral exists)

The standard deviation is defined as the square root of the variance, where the variance or second

statistical moment is given as (where the integral exists)

For the two equations above, the PDF may change depending on the variable in a particular system

model.  Proper evaluation of the PDF or statistical data for the variables in a model is required in order to

obtain the correct mean and standard deviation. But, it is beyond the scope of this paper to discuss issues

related to the use and manipulation of PDFs.  Frequently, though, the analyst will not need to develop or use

a PDF since statistical data may be available.  If data is available, the sample mean and standard deviation

are available through estimation theory, using the familiar equations
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where Xi are the specific data points and N is the total number of data points.

3.  Taylor Series Expansion Development

Let a system or model, denoted by S, be defined by:

where x1, x2,..., xn are system variables.  The system variables can represent any portion of the system but,

for the 2nd order analysis presented in this paper, must be mutually statistically independent.  Higher order

Taylor series expansion could be used, along with higher-order statistical moments, to evaluate correlated

variables, but that is beyond the scope of this paper.

Many mathematics texts address Taylor series expansion.  Rather than presenting an inordinate

amount of detail, only the results of the expansion process will be presented (Ang and Tang, 1975, Hahn and

Shapiro, 1967).  The expected value and the variance of the system equation above are:

The first moment or expected value of the system equation is a function of only two terms (to second

order accuracy).  The first term is the standard point estimate (simply evaluate the function using the mean
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gi"2 " 8gi"1 # 8gi#1 " gi#2

12Δ (8)

"2g (xi)

"x 2
i

#
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12Δ2
,

values).  The second term is a summation of the second partial derivatives of the system equation multiplied

by the respective variances.  After obtaining the partial derivative term, it is evaluated using the mean value

for the variables in the derivative term.  Occasionally, this term is displayed with symbolism signifying that

the derivative should be evaluated at the mean values, but it is not used here for purposes of clarity.

The second moment or variance of the system equation is a function of only one term (to second

order accuracy).  This term is a summation of the first derivative squared multiplied by the respective

variance.  Once again, after the derivative term is evaluated, the mean values for the variables should be used

to get a numerical result.

Since the two moments will be calculated numerically by using a spreadsheet, several mathematical

operations must be performed, including multiplications, additions, and derivations.  A spreadsheet is an

ideal method for executing the first two operations, but it is not ideally suited for differentiation.  While

functionally simple, taking the numerical derivative of an equation and achieving reasonable results is

sometimes difficult.

The derivative terms may be evaluated using standard numerical differentiation.  From finite

difference calculus, it can be shown (Hornbeck, 1975) that a central difference representation for the first

and second derivative is:

(9)
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where Δ is the mesh spacing or stepsize, gi-2 signifies the function g evaluated at x-2Δ, gi-1 signifies the

function g evaluated at x-Δ, etc.

These two equations are accurate to the fourth order (Δ4).  But, if the stepsize is chosen too small

such that calculations approach the accuracy of the computer's internal precision, additional inaccuracies may

arise.  Also, if the stepsize is chosen too large, the derivative equations will not produce accurate results due

to the mesh size spanning too much of the evaluated function.

The question of what stepsize an analyst should use to perform the calculations may arise.  One

potential solution to the answer would be to vary the stepsize and check for convergence of the results.  As

a general starting point, I use a stepsize of 0.005.  It should be pointed out that the stepsize used (e.g., 0.005)

in the TSE spreadsheet is a multiplier on the mean values for the model parameters.  Consequently, models

containing variables with large mean values (e.g., 100,000,000) will use the same stepsize as models

containing varialbe with small mean values (e.g., 0.0001).

Now that the derivative term has been defined, the tools are available to construct the Taylor series

expansion spreadsheet.  For the remainder of the paper, I will call the completed spreadsheet TSE.  The TSE

can be executed on any spreadsheet program that has a macro language.  For the example presented in this

paper, the TSE will be constructed using LOTUS 1-2-3, Release 3.1.  The spreadsheet is designed such that

the input/output screen is on worksheet A, while the macros are on worksheet B.  For non-multidimensional

spreadsheets, such as LOTUS 1-2-3, Release 2.x, minor translations (changing all "B" worksheet references

to the "A" worksheet) will be necessary.

The overall layout of the spreadsheet is given in Figure 1.  The spreadsheet must be built exactly as

shown in order for the macros, ranges, and formulae to work correctly.  The graphical lines and shading on
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the spreadsheet are not needed and are used only for illustrative purposes.  The text shown in Figure 1 (such

as "# variates", "Function =", etc.) are input as text labels in their appropriate cells.

The shaded areas in Figure 1 denote cells which require some type of input for the TSE to operate.

Conversely, the unshaded cells could be locked to prevent user manipulations after the TSE design is

complete.

The first shaded cell, B1, contains the total number of variates (or variables) in the function that is

to be evaluated.  The total number of variates corresponds to the subscript n in Equation 5.  In theory, the

total number of variates could be very large, but the TSE is designed such that a maximum of 15 variates

should be used.  A method of avoiding the 15 variate limit is discussed below.

The second shaded cell, E1, represents the actual function that is to be evaluated.  The equation

should be entered as a function of cells B4-B18, with B4 representing the first variate, B5 representing the

second variate, B6 representing the third variate, etc.  For example, if we wanted to examine the uncertainty

of the distance x in the equation x = vt + ½at 2, the function that would be entered into cell E1 would be

((B4*B5)+(.5*B6*(B5^2))), where cell B4 represents the velocity v, cell B5 represents the time t, and cell

B6 represents the acceleration a.

The third shaded area corresponds to the variates discussed above.  The cell range B4..C15 contains

the mean and standard deviation for the variates contained in the function listed in cell E1.  Thus, for the

example in the previous paragraph, cell B4 would contain the mean value for the velocity while cell C4

would contain the velocity standard deviation value.  Cell B5 contains the time mean value while the cell C5

would contain the time standard deviation value, and so on.  It was stated above that the maximum number

of variates is set at 15.  To increase this maximum, continue listing the variate (16, 17, etc.) parameters down
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columns B and C.  Also, the two defined ranges SUM1 and SUM2 (see Figure 4) need to be changed from

A:H4..A:H18 and A:I4..A:I18 to A:H4..A:Hx and A:I4..A:Ix, respectively, where x denotes the total number

of variates plus three.  As an example, if the function had 25 variates, the range SUM1 would be

A:H4..A:H28 while the range SUM2 would be A:I4..A:I28.

The last shaded area corresponds to the stepsize, which is represented by the Δ in Equations 8 and

9.  As discussed, I routinely use a stepsize of 0.005.  But, for most analyses, several values of the stepsize

could be used to evaluate the effect of the value on the overall results.  Also, the TSE could be modified so

that the stepsize is automatically changed and the results printed or plotted for each stepsize value.

Now that the basic interface structure has been discussed, the macros, cell functions, and ranges will

be discussed.  First, the macro structure is contained in five separate macro functions.  Figure 2 lists the TSE

macros, all of which are contained on the B worksheet.

As shown in Figure 2, the five macros are listed in column B, while the macro description is listed

in column A.  Thus, the \R macro is typed into cells B2 to B3 as shown.  After the macro is typed into the

cells, the two cells must be named \R by using the Lotus range name command \RNC.  When using Lotus

1-2-3, naming a macro with a backslash (\) then a letter allows the macro to be executed by pressing the letter

while holding down the ALT key.  Thus, TSE is executed by pressing R while the ALT key is depressed.

The analysis should not be started until after entering the number of variates, the function, the variate's mean

and standard deviation, and the stepsize.

Next, the cell functions need to be entered into the spreadsheet.  Figure 3 shows the seven functions

that must be entered and their respective cells.  For cell A:E1 (cell E1 on worksheet A), the function to be

entered is the user function.  Thus, when first developing the TSE model, this cell should be left blank.  The
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I ! V 1
RA

#
1

RB

#
1

RC
(10)

remainder of the functions should be entered as shown.  The function for cell E22 appears to wrap around

to a second line, but it should be entered as one continuous line in the cell.

And last, the worksheet ranges must be named.  Figure 4 shows the range name and the cell range.

All of the listed ranges should be named according to the list.  For example, cell A:E21 should be named

FIRST using the Lotus \RNC command.  The bottom five ranges in the list are the macro ranges and should

have been named previously when the macros were entered.

After the ranges are named, the TSE spreadsheet is complete and should be saved before using it for

the first time.  The example problem discussed below should be entered to help ensure that the spreadsheet

was entered correctly.  If the results are not identical to those presented, the macros and ranges should be

carefully checked.  But, if a different spreadsheet program is used (e.g., Quatro Pro or Excel), calculational

or roundoff differences between the two program versions may result in slightly different results for the

example problem.

4.0  Example Problem

For the sample problem to demonstrate the TSE, a problem from Hahn and Shapiro's (1967) statistics

text was evaluated.  The problem is to calculate the electron current for the circuit given in Figure 5.  The

equation to calculate the current in this circuit is:

where I = the current (amps), V = the voltage potential (volts), and R = the resistance (ohms).
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Each of these parameters is treated as a random variable.  Each variable has an associated

uncertainty.  Since TSE only requires a mean and standard deviation, no distributional requirements are

imposed on the analysis.  Such requirements would be needed if Monte Carlo analysis were employed to

solve the problem.

Table 1 lists each variate in the circuit equation with its mean and standard deviation.  All variates

are assumed to be mutually statistically independent since the independence assumption was used in the TSE

development.  The values in Table 1 were put into the spreadsheet and the TSE macros were executed by

pressing the R key while the ALT key is depressed.  Figure 6 shows the order of steps and the cell input at

each step taken to evaluate the circuit equation.

Table 1.  Variate parameters for the TSE example problem.

Variate Mean Standard Deviation

V 120 3.8730

RA  10 1.0

RB  15 1.0

RC  20 1.4142

The TSE spreadsheet gives the following results for the circuit problem:  point estimate = 26, mean

= 26.18555, and standard deviation = 1.61512.  Hahn and Shapiro gave the second-order, “hand calculated”

(e.g., analytical derivatives rather than numerical derivatives) answers for the electron current as:  mean =

26.19, and standard deviation = 1.6155.  For this paper, a Monte Carlo analysis was also performed for the

circuit problem.  Each random variate was assumed to be normally distributed with mean and standard

deviation given in Table 1.  For a sample of size 4000, the mean = 26.190 and the standard deviation = 1.683.
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As can be seen above, the TSE spreadsheet gives consistent answers for both the hand calculated

results and the Monte Carlo simulation.  Even though the electron current equation is nonlinear (with respect

to the resistance), the Taylor series analysis agrees with the Monte Carlo simulation.

5.  Conclusions and Considerations

The TSE spreadsheet evaluates the statistical uncertainty in functions of up to 15 variables.  This

paper guides the reader through setting up the TSE spreadsheet and using the completed spreadsheet to

evaluate equations consisting of random variables.  As illustrated in the example problem, TSE can

accurately calculate the uncertainty for some non-linear functions (e.g., equation 10).

Someone with experience in using electronic spreadsheets should be able to use the provided

spreadsheet layout, macros, cell functions, and range names to analyze the uncertainty for a user-supplied

formula.  Although the user-supplied formula is restricted to 15 random variables, a method of bypassing this

variable limit is furnished.

While it was shown that the TSE spreadsheet does perform well, situations may arise where the

Taylor series expansion analysis will differ significantly from Monte Carlo analysis.  Usually, this situation

occurs only when the evaluated function is nonlinear or contains distributions which are highly skewed.  If

the Monte Carlo analysis parameters have highly skewed distributions, the Taylor series analysis may not

adequately model the parameter variability (because higher order terms are needed, additional derivations

to the TSE equation are required, and moment estimators for the higher order terms are frequently poor).

Increasing the TSE analysis to a higher order (third or fourth order) may eliminate some of the

discrepancies between Monte Carlo and Taylor series analysis; that, however, is beyond the scope of this
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paper.  Regardless, the reader may find that the second-order TSE analysis presented in this paper is adequate

for many uncertainty analysis problems.  Also, the TSE analysis could provide a quick verification of a

model that was exclusively analyzed by Monte Carlo simulation, providing the equation for the model is

known.
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A B C D E F G H I
1 # variates Function =
2
3 Variate Mean Std.

dev.
F R Point estimate Sum1 Sum2

4 1 U E
5 2 N S
6 3 C U Expected value
7 4 T L
8 5 I T
9 6 O S Std. deviation

10 7 N
11 8
12 9
13 10 oldmean = F1=
14 11 I = F2=
15 12 H = F3=
16 13 stepsize = F4=
17 14 J = F5=
18 15 tempmean=

19
20 variance =
21 1st dir. =
22 2nd dir. =

Figure 1.  TSE spreadsheet layout.



18

  B:    A B
   1
   2 \R /wgpd{windowsoff}{FOR i,1,n-1,1,tse}{tse}
   3 {results}{calc}{windowson}/wgpe
   4
   5 TSE {for J,1,4,1,loop}{loop}{math}
   6
   7 LOOP {calc}{let @coord(1,2,I+3,1),tempmean}
   8 {recalccol function}{let @coord(1,7,j+12,1),function}
   9 {let @coord(1,2,i+3,1),oldmean}
   10
   11 MATH {calc}{let @coord(1,8,i+3,1),$A:$E$21}
   12 {let @coord(1,9,i+3,1),$A:$E$22}
   13
   14 RESULTS {let $A:$E$7,($A:$E$4)+@sum(sum2)}
   15 {let $A:$E$10,+@sqrt(@sum(sum1))}

Figure 2.  TSE macro commands (worksheet B).
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   CELL FUNCTION

  A:E1 user defined function
  A:E4 +$E$1
  A:E13 @@(@COORD(1,2,I+3,1))
  A:E15 (OLDMEAN*STEPSIZE)
  A:E18 (OLDMEAN+((J-3)*H))
  A:E20 (@@(@COORD(1,3,I+3,1)))^2
  A:E21 (VARIANCE*((FUNC1-(8*FUNC2)+(8*FUNC4)-FUNC5)/(12*H))^2)
  A:E22 (1/2)*(VARIANCE)*(-FUNC1+(16*FUNC2)-(30*FUNC3)+(16*FUNC4)

-FUNC5)/(12*H^2))

Figure 3.  TSE cell functions.
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   NAME RANGE

   FIRST A:E21
   FUNC1 A:G13
   FUNC2 A:G14
   FUNC3 A:G15
   FUNC4 A:G16
   FUNC5 A:G17
   FUNCTION A:E1
   H A:E15
   I A:E14
   J A:E17
   N A:B1
   OLDMEAN A:E13
   SECOND A:E22
   STEPSIZE A:E16
   SUM1 A:H4..A:H18
   SUM2 A:I4..A:I18
   TEMPMEAN A:E18
   VARIANCE A:E20

   \R B:B2..B:B3
   TSE B:B5
   LOOP B:B7..B:B9
   MATH B:B11..B:B12
   RESULTS B:B14..B:B15

Figure 4.  TSE defined ranges
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Figure 5.  Circuit diagram for the TSE example problem.
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  Cell Input Commenta

   B1   4 The total number of variates
   B4  120 Voltage mean
   C4 3.873 Voltage standard deviation
   B5   10 Resistance A mean
   C5    1 Resistance A standard deviation
   B6   15 Resistance B mean
   C6    1 Resistance B standard deviation
   B7   20 Resistance C mean
   C7 1.4142 Resistance C standard deviation
   E1 +B4*((1/B5)+(1/B6)+(1/B7)) Circuit Equation

Start macro by pressing Alt-R
____________________

a The comments are not input to the spreadsheet and are for instructional purposes only.

Figure 6.  Circuit problem input steps.


